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Long waves on a beach 

By D. H. PEREGRINE 
Department of Mathematics, University of Bristol 

(Received 31 May 1966) 

Equations of motion are derived for long waves in water of varying depth. The 
equations are for small amplitude waves, but do include non-linear terms. They 
correspond to the Boussinesq equations for water of constant depth. Solutions 
have been calculated numerically for a solitary wave on a beach of uniform slope. 
These solutions include a reflected wave, which is also derived analytically by 
using the linearized long-wave equations. 

1. Introduction 
When water waves approach a beach they usually increase in amplitude and 

break. An increase in amplitude can be derived theoretically from linearized 
equations of motion (e.g. Lamb 1932, $185); however, breaking has not been 
satisfactorily explained by any approximation. The finite-amplitude shallow- 
water equations (Airy equations) have solutions which become so steep that the 
water surface becomes vertical (e.g. Stoker 1957). However, an essential part of 
that approximation is that the water surface should have a very gentle slope, thus 
the approximation becomes invalid before waves start to break. The work pre- 
sented here does not apply to breaking waves, but it should provide a better 
approximation for steep waves than the Airy equations. 

If relatively gentle waves approach a shore it is observed that the crests behave 
in some ways like separate waves so that they sometimes look like solitary waves. 
Munk (19493) attempted to describe the motion of waves up a beach by making 
use of the properties of the solitary wave; however as Ippen & Kulin (1954) 
pointed out, it  is not possible for a solitary wave to maintain the same total energy 
and volume in water of varying depth. 

The Boussinesq equations describe a solitary wave in water of constant depth: 
compared with the Airy equations they include an extra term due to the effect of 
the vertical acceleration of the water on the pressure but they are limited to small 
amplitude waves. Equations corresponding to Boussinesq’s are derived here for 
water of variable depth using an expansion similar to that used by Keller (1948). 
They are derived for three-dimensional motion, but are only used for a two- 
dimensional example. The particular example of a solitary wave approaching a 
beach of uniform slope has been computed by using a numerical approximation 
and the results are presented in 0 3. These solutions show a wave reflected from 
the beach, and the linearized long-wave equations are used in $ 4  to give a qualita- 
tive description of reflexion. 
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2.  Equations of motion 
Non-dimensional variables are used as follows : 

(x, y,z) = h,Yx*, y*,z*), t = t* gp,, p = p*/pgh,, 

(u, v, w) = (gh,)-t (u*, v*, w*), 

where * indicates a dimensional variable and h, is a length representative of 
the depth of water. The z-axis is taken vertically upwards, the free surface is 
z = 6 (x, y, t )  and the bottom is z = - H ( x ,  y). 

The x- and y-directions are treated in the same way, so, to simplify expressions 
occurring in the equations, a two-dimensional vector notation is used. A symbol 
in Clarendon type indicates a vector with x- and y-components only, e.g. u = (u, w) 
and x = (x,y). The two-dimensional vector operator (a/ax, a/ay) is denotedbyv. 

Euler's equations of motion for an inviscid fluid are 

a q a t  + (U . v) u + w(aujaz) + v p  = 0, 

a w p t  + (U . v) w + w(aw/az) + (aplaz) + 1 = 0. 

(1) 

(2) and 

The continuity equation is 
v .  u + (awlax) = 0, (3) 

or, in integrated form, ( a g a t ) + v . Q  = 0, (4) 

where Q =/' udz. 

The boundary conditions are 

- H  

p = 0 at z = g(x,t), 

and ( u . V ) H + w  = 0 at x = - H ( x ) .  

The kinematic boundary condition at z = 5 is used in (4) and is not needed ex- 
plicitly here. Irrotational motion is assumed so that 

aupy = avpx and a u p z  = VW. ( 5 )  

Note that in the presence of a free surface the vorticity of an inviscid fluid does 
not necessarily remain zero if it  is zero initially. The free surface can intersect 
itself, as happens when a wave breaks and vortex sheets are formed. However, 
the following theory is not expected to hold when a wave starts to break. 

The neglect of viscosity, which is reasonable for water more than about a foot 
in depth, should be a very good approximation for waves invading still water, 
because the effects of viscosity are at first confined to thin boundary layers at  the 
surface and on the bottom, and since the waves travel much faster than the water 
itself, the vorticity in the boundary layers is not carried forward with the waves. 

There are two important parameters associated with long waves. One is the 
ratio of amplitude to depth, and the other is the ratio of depth to wavelength; 
they will be represented by e and IT respectively. For all long-wave theories 
(T 4 1. For finite-amplitude theory e = O(1) but for the solitary wave and the 
Boussinesq equations E and g2 are of the same order, and we shall make this 
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assumption here. In  fact, by suitable choice of the horizontal length scale, 6 = v2 
will be assumed. Ursell (1953) discusses the importance of the ratio B: a2. 

The variables c, p ,  u, Q are expanded in the form 

f=fo+€f1+€2f2+ ... (6) 

and w as w = ~ ( W 0 + € W l +  ...). ( 7 )  

The independent variables are scaled so that 

a/ax: = a(a/ax,), a/ay = a(a/ayl), or V = aV,, and a p t  = a(a/at,). ( 8 )  

The variables gi, pi, ui, Qo (i = 0,1, ...) and their derivatives with respect to 
xl, yl, x and t, are all assumed to be O( 1) so that the order of magnitude of terms 
in the equations appears explicitly when the relations (6), (7)  and (8) are substi- 
tuted. H(x,)  and its derivatives must also be assumed O(l) ,  otherwise the varia- 
tions in depth of water would be shorter than the incident waves and tend to 
generate shorter waves, thus upsetting the scheme of the approximations. 

The zero-order solution is taken to be still water, so that 

Po= - 2 7  

and all other zero-order variables are zero. If, instead, the zero-order equations 
are worked out, they are the Airy equations. Note, Keller (1948) calls them the 
first approximation. 

The first-order relation from (5) is 

au,p = 0, 

and hence, u1 = u1(x17 t 1 ) 7  

and therefore, Q1 = Hu,. 

From ( 2 )  ap,/az = 0, which combined with the boundary condition po + ~ p ,  = 0 
at z = ec,, gives p1 = c,. The first-order equations from (1) and (4) then give 

(au,/at,) + v1c1 = 0 (9) 

and (acl/at,) + 0,. (Hu,) = 0, (10) 

which are the linearized long-wave equations. 

(3) with respect to z and applying the boundary condition at z = - H ,  
The vertical velocity w1 is found by integrating the first-order equation from 

w,= - V,. (Hu,) - zV,. ~ 1 .  

For the second-order terms the same pattern is followed. Equation ( 5 )  gives 

au,/az = vlwl, 

u2 = U,(X,, tl) - ZV,[V, * (Hull]- 4Z2V, (V, . Ul), so that 

where U,(x,, t,) is an arbitrary function arising from the integration. Equation (2) 
now includes the vertical acceleration 

(awlp,)  + (aP,/W = 0, 
and integrates to 
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where the boundary condition at x = ~ { , + e ~ { ~  has been used. On substituting 
for u2 and p z  the second-order momentum equation, from ( l ) ,  becomes 

(auzpt) + (u1. V,) u, + v, {, = 0. (11) 

The form of this equation depends on the origin of x ;  the higher derivatives 
cancel out only when x = 0 is taken as the undisturbed free surface. Similarly, 
there are equivalent terms in the continuity equation which depend on the origin 
of 2. 

From the definition of 0. 

which gives 
Q, = ~lu1+HU,++H2V1[V1. (Hu,)]-QH3V1(V1.u1). 

The second-order terms of the continuity equation (4) are 

(aCz/atJ + V,. Q z  = 0. (12) 

At this point a change in approach is required. It is possible to find a solution 
for U, and Cl and then to proceed by putting these values in (1 1) and (12) to find 
U, and {,. However, this is only practicable for small values oft,, and solutions 
of the equations for a flat bottom show that the actual solution can vary substan- 
tially from that of the linearized equations, as, for example, with the undular 
bore (Peregrine 1966). The second-order terms have first-order effects over 
moderate times. To include these effects first-order variables incorporating the 
second-order terms are used. For example, for the wave amplitude the obvious 
variable is 

For the velocity variable there are more possibilities, in particular, the mean 
velocity, 

y = s{l++yz. 

ti = Q / ( H  + 7) = C U ~ +  e2{U, + +HV1 [V, . (Hu,)] - &H2V, (V, . u,)}; 
and the velocity at x = 0, u' = €U1+€2U2. 

In  terms of ii the momentum and continuity equations, formed by adding e 
times (11) and (12) to (9) and (10) respectively and by changing back to the 
variables x, y and t ,  are 

(13) 

and (ay/at)+v.[(H+r)ii] = 0. (14) 

a a 
at at 

+ (ii. V ) 8  + Vy = + H z  V[V. ( H a ) ]  - QH2 - V(V. a), 

The variable used in the next section is ii; however, i t  may not be the most 
convenient variable for three-dimensional problems since the irrotationality 
condition becomes 

i a ~  a aii az i a ~  a 
ay ax 2 ay ax 2 ax ay 

V . (Hii) - - - - V . (Hi i )  _ _ _  = 

aH a a~ a 
ay ax ax ay 

-+H--V.ii++H --V.ii. (15) 
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The equations for ii’ may be better for three-dimensional motion: they are 

( a q a t )  + (u’ . v) U’ + v7 = 0, (16) 
(aqlat) + v . [ ( H  + 7) U ~ I  + iv . {H~VCV. (HU’)] - QH~V(V. u’)> = o ( I  7) 

and ( a q a y )  - (av’/aX) = 0. (18) 

A different derivation of equivalent equations for two-dimensional motion has 
been given recently by Mei & Le MBhautB (1966), the velocity at x = - H ( x )  is 
the velocity variable they use. 

In  all these equations the form of the second-order terms may be varied con- 
siderably by using the first-order relations 

(aulat) + V7 = 0, and (@/at) + V .  (Hu) = 0. (19) 

3. A solitary wave on a beach 

and (13) and (14) become 
For a beach of uniform slope 01 and with water in the region x > 0, H ( x )  = m, 

and 
a 

at ax 2+- [(ax+r)fi]  = 0, 

for two-dimensional waves with crests parallel to the shore line. 
No analytical solution of these equations has been found, so approximate 

solutions have been calculated by making a finite-difference approximation to 
the equations and solving the resulting equations numerically with an electronic 
computer. The approximation was very similar to that which had already been 
used for the equations for a uniform depth of water (Peregrine 1966). The finite- 
difference equations are given in an appendix. 

The initial condition was chosen to correspond to a realizable physical situa- 
tion-a solitary wave meeting a beach after travelling in a channel of uniform 
depth. Experimental measurements of such an arrangement were made by Ippen 
& Kulin (1954). Another easily realizable situation is a train of waves approach- 
ing a beach, but this raises a number of problems. If the waves are assumed to 
come from deep water their shape in shallow water has not been determined, 
though for very gentle waves a reasonable approximation might be found from 
the linearized Stokes’s wave approximation. More important is the fact that each 
wave is influenced by its predecessors and there is, a t  present, no way to determine 
this once waves have broken. 

The initial water profile was 

7 = a, sech2 i( 3a,)* (x - 01-l). 

That is, the same as a solitary wave in water of unit depth with its crest at 
x = a-l, which is where the undisturbed depth of water is unity. The wave was 
taken to have a constant initial velocity of - (1 + +ao) so that f i  could be found 
from the continuity equation to be 

f i  = - - P + i ~ 0 ) 7 / ( ~ + 7 ) ,  

thus making some initial allowance for the sloping bottom. 
52-2 
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Results were calculated for a number of different beach slopes and initial wave 
amplitudes. An example is shown in figure 1. It shows the features one would 
expect, the wave steepens and grows in amplitude. Although the forward slope 
of the wave is similar to a solitary wave, the wave as a whole ceases to look like 
one. (Note that there is considerable vertical exaggeration in the figure.) The 
range of integration was 0 < x Q a-l+ 10, that is, the wave was initially well 
within the range of integration. The boundary condition at x = a-l+ 10 was 
designed to allow waves to travel out of the range of integration away from the 
beach, but not to generate waves approaching the beach. It appeared to be 
successful. 

0.20 

0-1 5 
0.10 

0.05 
0 

+ X  

FIGURE 1. A solitary wave approaching a beach. cc = 1/30, a, = 0.1. 

As the wave approaches the shore it gets higher and steeper so that the two 
parameters, e and g, which were assumed to be small in the derivation of the 
equations, continually increase. It is clear that the equations are not valid for all 
time since the wave will ultimately break. It would be surprising if the approxima- 
tion were good right up to breaking since 8 and v become O(1). As a rough cri- 
terion for ending the calculations, the ratio of the amplitude to the initial depth 
of water at the position of the crest was allowed to increase to 0.6. In  the experi- 
ments performed by Ippen & Kulin (1954) this ratio sometimes increased to 2 
before the waves broke, while for periodic waves a value around 1 is more usual 
at breaking. 

The maximum height of a wave is an easy thing to measure and is also a para- 
meter of some practical importance. Results for the variation in height of the 
waves are plotted in figure 2 for a variety of initial wave amplitudes with the 
same beach slope. There is no systematic variation with wave amplitude. Similar- 
ly, there is no systematic variation with slope. The full line in figure 2 represents 
Green’s Law, which is derived from the linearized equations of motion and gives 
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a variation of amplitude of H A  (Lamb 1932, $185). It appears to  give a reason- 
able approximation. 

The experimental results of Ippen & Kulin show considerable scatter. How- 
ever, they fitted curves of the type H-" to their data and found n = 0.49, 0.26, 
0.19 for a = 0.023,0-050 and 0-065 respectively (n = 0.25 for Green's Law). 

1 -3 
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+ Depth 

FIGURE 2. Change of amplitude with depth. Solitary waxes of different initial amplitudes. 
CL. = 1/20. 
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FIGURE 3. Reflexion from a solitary wave. a = 1/40, a, = 0.1, t = 25. 

There is one unexpected property common to all the calculations, the wave 
amplitude does not start increasing at once. This could be because the initial 
conditions may not correspond to the appropriate solution of the equations, or, 
it  may represent a real effect. The latter explanation is possible since Ippen & 
Kulin observed a slight decrease in the amplitude of solitary waves as they passed 
from water of a uniform depth on to a sloping beach. They surmised that it might 
be due to a reflexion from the foot of the beach. However, there is no evidence in 
the calculated results for any reflexion other than that due to the beach as a 
whole. 

The reflected wave took the form of a long low elevation behind the incident 
wave. It was an outward travelling wave since the water velocities associated 
with i t  were directed away from the shore. A typical example is shown in figure 3 
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with substantially greater vertical exaggeration than in figure 1. In  the next 
section such a reflexion is derived from the linearized long-wave equations. A 
similar derivation can be made from the Airy equations. 

4. Reflexion 
When waves run up a gently sloping beach, they break and lose much of their 

energy in turbulence, unless they are so small that surface tension and viscosity 
are important; hence, there cannot be total reflexion. Some reflexion may occur 
before the wave breaks, in the region where shallow-water equations are valid; 
this reflexion is considered here. The linearized equations are used and a wave of 
limited extent is taken as an example. 

The linearized long-wave equations (19) for two-dimensional motion are 

and 
(au/at) + (avpx) = 0, 

(@/at) +H(au/ax) + au  = 0, 

where a = dH/dx. A characteristic form of these equations is 

Characteristic co-ordinates ( X ,  Y )  are introduced such that 

dX = dt - H-tdx 

and dY = dt+H-*dx, 

so that 

and 

2(a/aY) (7 + H ~ U )  = - &tu 

2(a/aX) (7 - Hi,) = - &CU. 

If the characteristics X = constant and Y = constant through a point P are 
denoted by C, and C, respectively, the solution of these equations may be written 
in the form I- 

n 

where the integrals are from t = 0 to P. 
Now, suppose a to be sufficiently small for the integrals in (20) and (21) to be 

small relative to both 7 and u. This implies that a < r and that the integration 
is over a distance small compared with a-l. The second condition means that the 
total change of depth must be small in the region where u differs from zero. With 
these assumptions a first approximation is 

7 + H t u  = constant along C,, 

7 - H t u  = constant along C,. 
( 2 2 )  

(23) 

If a wave travels in the ( - x)-direction into still water the constant in (22) is 

7 = - Hhzc = constant, zero, and thus 
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along C, characteristics. Figure 4 shows the track of a wave of limited extent 
propagating in the ( - 2)-direction. 

Reflexions will occur in the region to the right of the wave and are found by 
looking at terms of O(a)  while assuming the first-order terms to be unchanged. 
Consider a point in this area, such as P. The C, characteristic, PQ, through P 
starts in water behind the wave, and if the reflexion is as small as O(a) ,  (21) can 
be written as 

y-HBu= O(a2) at P. 

On the other hand, the C, characteristic through P, PR, starts in still water and 
passes through the wave where the integral in (20) is significant: that is, a t  P, 

I- 

t 

FIGURE 4 

When this is combined with (24), it is seen that there is reflexion from the wave 

and it has height P 

An approximate value for this integral may be found by assuming the depth 
along AB to vary so little that it may be taken as constant. This is consistent 
with the approximations already made. The integral is changed from one along 
AB to one at a constant time t = to. 

dX = dt-H-Bdx = 0 
Along AB 

and 

So that, if ds is an element of distance along AB with 

d Y  = dt + H-gdx. 

as2 = d X 2  + dt2, 

d Y  may be changed to 2( 1 + H)-Bds. Corresponding to an element of distance ds 
on AB there is an element of length dx at time to which has the same C, character- 
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istics and, hence, the same values of 7 and H4u to the first order (see figure 5) .  
If t = to is close enough to both A and B for all lines in figure 5 to be assumed 
straight, then 

and thus 

This gives an expression for the height of the reflexion, which may be written 

-+aH-* udx or &H-l rdx.  s s l=lo 

as 

t=to 

For example, with a solitary wave of amplitude a in unit depth of water 

7 = &(+a)*. 

For the example illustrated in figure 3 , r  = 0.002, which is similar to the calcu- 
lated amplitude. 

A qualitative description of the form that reflexion takes can now be given for 
a few examples. First, consider a single wave of elevation, suchasa solitarywave, 
passing over a gentle slope from water of one depth to water of a lesser depth 
(figure 6). By drawing the appropriate characteristics a good idea of the reflexion 
is obtained. While the wave is crossing the slope it is continually giving rise to a 
reflexion. If the slope has length L times its average depth, the reflexion has a 
length of approximately 2L. If the wave were travelling up a beach, the reflexion 
occurring before the wave breaks would take the form of one very long wave: its 
amplitude would increase towards its end, corresponding to the incident wave 
travelling in shallower water. If the incident wave were a depression instead of an 
elevation, the reflexion would also be a depression. On the other hand if a wave 
of elevation were travelling into deeper water its reflexion would be a depression. 
For example, a solitary wave passing over a hump in a uniform channel would 
give rise to a reflected wave consisting of a long elevation followed by a de- 
pression. 

Now consider a sinusoidal train of waves passing over the same bottom topo- 
graphy as in figure 6.  In  this case the amount of reflexion depends on how many 
waves a characteristic meets when it crosses the sloping strip. Successive troughs 
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and crests will tend to cancel one another, so that, depending on the number of 
waves along a characteristic, reflexion will have minima and maxima. This is 
similar in its effects to the reflexion of light off thin films of transparent material 
when interference occurs. Such a situation has been described analytically by 
Kajiura (1961). He considered a transition between levels with the depth varying 
as x2 (the solution was originally used by Rayleigh 1894, §148b, for acoustic 
waves). The analytic solution shows that interference is important in determin- 
ing the amount of reflexion. The reflexion diminishes as the number of waves on 
the transition strip is increased, as well as becoming zero at regular intervals. 
Dean (1964) has considered a linear transition and found similar results. 

In  practice the most usual situation is a train of waves approaching a shore 
from deep water. The results of this section indicate that there will be some 
reflexion from the shore before the waves break. The approximate evaluation of 
the integral in (25) assumes small changes in depth, but it is reasonable to suppose 
there will be little qualitative difference for large changes of depth. On a gently 
sloping beach a large number of waves would be in shallow-water at once and 
reflexion would be very small because of interference. However, on a steep beach, 
with only one or two waves in shallow water the reflexion can be much larger. 

‘Surf beats’ (Munk 1 9 4 9 ~ ;  Tucker 1950) are a form of long-wave reflexion 
which appears to take place in the zone of breaking waves. Nevertheless, parts 
of this reflexion may occur in a similar manner to that outlined here. The mean 
water level in a group of high waves is lowered by ‘radiation stress’ (Longuet- 
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Higgins & Stewart 1962) and the effect on the integral in (25) would be the same 
as that from a long wave of depression. From wave records and details of bottom 
topography one might evaluate this integral and compare it with the observed 
reflexion; the remainder might then be attributed to the surf zone. 

I wish to thank Dr T. Brooke Benjamin for helpful discussions, the Director of 
the University Mathematical Laboratory, Cambridge, for permission to use 
EDSAC I1 for the computations, D.S.I.R. for a research studentship and the 
Institute of Oceanography, University of British Columbia for a research 
fellowship. 

Appendix 

follows, using the same notation as Peregrine (1966). 

provisional value for qr,s+l, 

The finite-difference equations used in the calculations described in $3  are as 

First, an approximation to the continuity equation which gives 7zs+l, a 

Secondly, an approximation to the momentum equation to find u ~ , ~ + ~ ,  

* * 
+ "lr+l, s+l- "lr-l,s+l+ "lr+l,s - "lr-1,s 

4Ax 

Finally, the continuity equation was used again to give an improved value for 
"lr, S+U 

%+l,s+l- Ur-1,si-l +'%tl,s- Ur-l,s 

Ax + (EX + "lr, s) 
"lr,s+l- ?r,s 

At 
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CORRIGENDUM 
‘Subcritical convective instability, Part 1. Fluid layers’, by D. D. JOSEPH and 

C. C. SIIIR, J .  Fluid Mech. vol. 26, 1966, p. 753. 

The words ‘decreasing’ and ‘decrease’ in the fourth and fifth lines of the 
summary should be replaced by ‘increasing’ and ‘increase ’ respectively. 


